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The thermohaline stability problem previously treated by Stern, Walin and 
Veronis is examined in greater detail. An error in an earlier paper is corrected 
and some new calculations made. It is shown, for instance, that direct convec- 
tion can occur for thermal Rayleigh number R much less than 100 R, when 
R, 2 0.1, where R, is the salinity Rayleigh number. A graphical presentation is 
devised to show the relative importance of the different terms in the equations of 
motion as a function of R and R,. The most unstable mode over all wave-numbers 
for each R, R, is found and it is shown that where both unstable direct and 
oscillating modes are present, the most unstable mode is direct in most cases. 

1. Introduction and summary 
This paper examines the stability of a stationary fluid stratified in both heat and 

salt content when the linearized equations are applicable. This problem has 
already been discussed for various horizontal boundary conditions by the authors 
mentioned below, but for the most part attention has been focused on the deter- 
mination of criteria for the onset of instability. Notable exceptions here are 
the finite amplitude studies of Veronis (1965, 1968). In  this study the authors, 
by the usual method of normal modes, have examined the nature of the motion 
for systems which are well and truly (as distinct from marginally) unstable, and 
considered the relative importance of the various terms in the governing equations. 
The motivation for this is twofold: to complete and clarify some aspects of the 
linear theory and to suggest useful approximations for finite amplitude studies. 

Some of the properties of the thermohaline convecting system were first noticed 
by Stommel, Arons & Blanchard (1956) with the discovery of the phenomenon 
of the salt fountain, which occurs when hot salty water lies above cold fresh water. 
Such a system was analyzed by Stern (1960), who noted the general properties 
of the motion now commonly known as ‘salt fingers’. The situation with gradients 
reversed (i.e. with salt gradient stabilizing and temperature gradient destabiliz- 
ing) has been studied by Veronis (1965). Both these investigations consider the 
fluid to lie between two horizontal boundaries, thus permitting the specification 
of the undisturbed system by two Rayleigh numbers. The situation when no 
boundaries at  all are present has been considered by Walin (1964), and stability 
criteria for horizontal boundaries of various kinds have been presented by 
Nield (1967). 

The present study restricts attention to fluid lying between two horizontal 
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boundaries which are dynamically free and conducting to both heat and salt. 
The advantage of this choice is that all the equations and boundary conditions 
may be satisfied by products of sine and exponential functions. For systems with 
other boundary conditions (see Nield 1967), many of the same general conclusions 
obtained here should still apply. 

In  a dimensionless formulation four parameters are required for description 
of the motion, the thermal and salinity Rayleigh numbers R and R,, the Prandtl 
number Q = v/r+ and 7 = K s / u T ,  where v, uT and us are the viscosity and diffusivi- 
ties of heat and salt respectively. All these are assumed to be constant. For given 
Q and 7, results may be presented as contours in a Rayleigh number (R, R,) 
plane, each point on this plane representing a system with given temperature 
and salinity stratification. The line R = R, represents an equilibrium state of 
constant density, and if R > R, the density increases upward. This investigation 
is divided into three sections. First, the nature of the normal modes of the system 
for a disturbance of given wave-number is considered, for all R, R,. Secondly, 
the most unstable (i.e. fastest growing) mode over all wave-numbers is found, 
and thirdly, with the aid of the preceding sections the balance of terms in the 
vorticity and energy equations is explored. The main interest in the thermohaline 
problem arises from those regions of the R, R, plane where the system behaves in 
a fundamentally different manner from that of a purely thermally stratified 
system, and there are two such regions, the ‘salt finger’ region and the ‘over- 
stable’ region. This differing behaviour is due to the inequality between the 
diffusivities of heat and salt, and ifthese diffusivities were equal the system could 
be adequately parameterized by a single Rayleigh number. 

In  the region of the R, R, plane where 

2 7n4 
R,/T < R-- < R, < 0, 

4 

the system is unstable via the ‘salt finger’ mechanism. Though the mean density 
gradient is stable, convective motion is driven by salinity differences between 
the rising and falling columns of fluid (i.e. fingers), because the temperature 
is made more nearly uniform by the comparatively rapid diffusion of heat. 
This phenomenon is well documented experimentally, for example by Stommel & 
Faller (Stern 1960), Turner & Stommel(l964) and Turner (1967). At the boundary 
of instability, 

the horizontal wavelength of the neutral disturbance is of the order of the depth 
of the fluid layer; however, as one proceeds a short distance into the unstable 
region the horizontal wave-number of the most unstable mode increases very 
rapidly, so that the ‘cells’ tend to be very tall and thin (in Turner’s (1967) experi- 
ments they are of the order of 2 mm thick). This property was first indicated by 
Stern and is verified in detail here. Also, the growth rates of the most unstable 
modes in the ‘salt finger’ region are generally much smaller than those for direct 
modes when R > R,. 

The second major phenomenon of interest is the oscillatory instability which 
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occurs when the temperature gradient is unstable and the salt gradient is stable. 
The mechanism for oscillations is well explained by Veronis (1965) and is another 
consequence of the fact that K ~ :  the diffusion of heat reverses the local 
buoyancy gradient each half cycle. For a fixed 

r+1 27n4 
R, > R: = ~ r2-  < 1, 

a(1-r) 4 

the behaviour as R increases is as follows. As shown by Veronis, instability is 
first observed when 

a+r 
r+l 

R =  -Rs+(1+r) 

with a horizontal cell size of 4 2 4  where d is the depth of the fluid layer, and with 
a frequency which is approximately [{l - r } / { 3 ( ~ +  l)}]*N provided R, $ e, 
where N is the Brunt-Vaisalii frequency of the stable salt stratification. Oscil- 
lations of a type compatible with the theory have been observed by Shirtcliffe 
(1967) and Turner (1968). For a diagram showing where oscillatory modes occur 
on the R, R, plane the reader is referred to figure 3, where Xw represents equation 
(1.2). As R is increased in the unstable region, the line is reached where the 
frequency of an oscillating mode has decreased to zero, and here this mode also 
has cell width 42d. Above this line direct modes are possible, and for R, 
large x P has the form 

so that direct modes occur for R < l/rR,-7n4 ( r  < 1) contrary to a state- 
ment by Veronis (1965). The dominant mechanism driving the motion for 
unstable direct modes in bhe region R > R, is pure gravitational (‘Taylor’) 
instability, modified by the different diffusive processes. 

If we consider the most unstable mode as R increases from XF with R, 
constant, the cell width decreases slowly while the frequency of oscillation first 
increases and then decreases. However, the most unstable mode changes abruptly 
from oscillatory to direct on a line which is almost indistinguishable from xr 
and lies slightly above it. On crossing this line in the direction of R increasing, 
the frequency jumps to zero and there is also a discontinuous increase in the 
horizontal wavelength (i.e. cell size). This implies that the observed cellular size 
and motion may be very different for systems which are represented by points 
near this line but on opposite sides of it. 

In  connexion with the line xr, it is interesting t o  note some experiments by 
Goroff (1960) for the closely analogous system of convection restrained by rotation. 
For various Taylor numbers, Goroff measured heat transport by convection as a 
function of Rayleigh number, and found that the gradient of the curve Nusselt 
number versus Rayleigh number has a sharp increase at  the point where direct 
modes (as predicted by linear theory) become possible. This suggests that at  
finite amplitude oscillatory modes tend to be less efficient than direct modes for 
transporting heat. It is possible that similar behaviour occurs in the heat-salt 
system, i.e. thab for fixed R, there is a discontinuity near xr in the gradient of 
the curve Nusselt number versus R. 

R = R,+O(R!), (1.3) 

19-2 
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For the thermohaline system with stable salt gradient, the linearized equations 
are similar to those governing the motion of a stratified fluid where the stabilizing 
factor is rotation (as has been indicated above), or a vertical magnetic field in the 
case of a conducting fluid (see Chandrasekhar 1961) rather than a solute. Calcul- 
tions for these systems which to some extent parallel the work done here have 
been made by Danielson (1961) and Weiss (1964). 

The work in the final section is equivalent to a scale analysis for thermohaline 
systems with continuous gradients (albeit without the non-linear terms), and 
potential applications of this to more practical systems form one of the main 
justifications for the exhaustive study of the simple linear system. 

2. Linear stability analysis 
We consider a layer of fluid of depth d with linear temperature and salinity 

gradients (in the undisturbed state), and lying between two horizontal boundaries 
which are dynamically free and conducting for both heat and salt. Adopting 
Veronis's (1965) notation, we have for the density 

p = p,( 1 - aT* +pS*), (2.1) 

where pm is the mean density of the system, T* and S* are the temperature and 

1 aP 
salinity, and 

a=-!(*) , p=-( - )  , 
P aT* S,P' p as* T,p* 

where p* represents pressure. We let the differences in temperature and salinity 
between the bottom and the top be AT and Ah' respectively. Then if the salinity 
gradient is stabilizing and the temperature gradient destabilizing, we have 
AT > 0, AS > 0. With x and z as horizontal and vertical co-ordinates respectively 
and t as time variable, the relevant Boussinesq perturbation equations in non- 
dimensionalized form are 

where 9 is the stream function with velocity given by 

u = (u,w) = (-$ g) , 
c is the Prandtl number V / K ~  and r = Ks]KT,  where v is the viscosity and K,, K~ 

are the diffusivities of salt and heat respectively. R and R, are the temperature 
and salinity Rayleigh numbers defined by 

(2.5) 

where g is the acceleration due to gravity. 
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The physical (i.e. dimensional) variables, denoted by stars, are given in terms 
of the non-dimensional ones by 

The boundary conditions at z = 0, 1 for the set (2.3) are 

A set of functions satisfying these equations and boundary conditions is 

@ N e*l sin Tax. sin nm, 

T, S N ept cos nax. sin nnx, 

where na is a horizontal wave-number, nn a vertical wave-number where n is 
necessarily an integer, andp must satisfy (see Walin 1964, Veronis 1965) 

p3 + (a+ 1 + r )  k2p2+ [(a+ ar + r )  k4- (R-R,) an2a2/k2]p 

+a7ks+(R,-rR)un2a2 = 0,  (2.9) 

where k2 = +(a2 + n2). (2.10) 

Writing p = k2q this equation becomes 

F(q) = q3+ (a+ 1 + 7) q2+ [a+ ar + r - a(R'- Ri)] q + a ( ~ +  RL - rR') = 0, (2.11) 

where R' = n2a2R/k6, Ri = n2a2RS/k6. (2.12) 

Hence an investigation of (2.11) will yield the behaviour of the modes for any 
wave-number k. For any given values of a, r, R', RI; (2.11) has three roots for q. 
One of these roots is real? in all circumstances, whereas the other two may be 
real or complex conjugates. For present purposes we will fix a and r to the values 
a = 10, r = 0.01, corresponding, roughly speaking, to cold salty water, and con. 
sider the behaviour of the roots with variation of R', Ri. (This choice of values for 
a and r involves some loss of generality in the diagrams, but for different pairs 
of values they may easily be constructed by the methods used below.) 

The nature of the roots in the regions of the (R', RL) plane is shown in figure 1.1 
The lines 

Z X :  7RI-R: = r, 

X W :  a(a+ 1) R'-a(a+r) RL = (a+ 1) (a+ T) (1 + r ) ,  

as found by Veronis, represent the boundary between stability and instability 
of the system to infinitesimal disturbances of wave-number k (i.e. given a, n), 

t kg a point of analysis, each single root qr (regarded as a function of R', R:) has a branch 
point (but no other form of singularity) at the point X (figure l), and its representation in 
the R', R: plane requires a three-sheeted Riemann surface for 1-1 correspondence. q j  
takes the value of each of the roots of the cubic equation in turn, on successive sheets. 

$ It has been drawn to the authors' attention that a diagram of the nature of the roots 
of a similar cubic equation appears in a thesis of D. A. Nield. 
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and are the lines where a root of (2.11) has a zero real part. These lines meet at  the 
~ 

((T+ 1) T2 

u(1-r)' a(1- 7) - Rl = 
a+?- point X given by 

R' = ~ (2.14) 

X Y  is a continuation of the line Z X ,  and on this straight line one root of (2.11) 
is zero. The line X V  represents part of the boundary between the regions where 

For small disturbances of wave-number k therefore, systems represented by 
points in region I (in figure 1) are stable, as in this region no root of (2.11) has a 
positive real part. In region I1 the complex roots have a positive real part, and 
so systems in this region are subject to oscillating instability, or ‘overstability’, 
but the direct mode is stable. In  regions I11 and IV, systems have unstable direct 
modes, one unstable mode in region IV  and two in region 111. Note that the line 
representing neutral buoyancy in static conditions is 
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The lines on which q is a real non-negative constant are shown in figure 2. 
These are the lines of equal growth rate (for given k) for the direct modes, and by 
(2.1 1) are straight lines. To the left of the line Z X  Y (region IV, as shown in figure 
1) only one of these lines passes through each point so there is only one direct 

R' I/ 

FIGURE 2. Lines of constant growth rate and constant frequency (shown dashed) 
in the R', R: plane. 

growing mode. In region I11 (between X Y  and X V )  two lines pass through each 
point, so that there are two direct growing modes, and the line X V  bordering 
this region is the envelope of these straight lines. In  figure 2 only the line corres- 
ponding to the mode of greater growth rate is drawn through a given point, so 
that each line terminates at the point where it is tangent to the envelope. 

In  the region I1 between X V and X W where growing oscillating modes are 
possible, we write q = q,.+iqi in (2.11), and by taking real and imaginary parts 
we obtain, when pi  is non-zero, 

(2.18) 

Eliminating qi then gives the following cubic in 4;: 

8$+ 8(a+ 1 + 7) q,"+ 2[a+ (TT + T +  (a+ 1 + 7)2 -  m' - g ) l  4,. 

+ (a + 1 + 7 )  (a -k 0 7  f 7) - a7 - @(a + 1) R' - (a -k 7)&] = 0. (2.19) 
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The lines on which q,. is a non-negative constant are drawn in figure 2, and since 
R’, RL occur linearly in (2.18) these lines are also straight. Other lines pi  = constant 
may be obtained from (2.17),  and these are also shown in figure 2. The line X W  
corresponds to the limit q,. = 0 and the line X Y  to the limit q$ = 0. Hence from 
(2.11) and (2.17) we have two parametric equations for the line X V ,  

-m) = 0,  P ’ ( q )  = 0, (2.20) 

and these may be written in the form 

(2.21) } 
a(R‘ - Ri) = + + 7 + 2 ( ~  + 1 + 7)q + 3q2, 

a(k‘- 7Ri) = - m-+ (a+ 1 + T)q2+ 2q3, 

the parameter q being the value of the two equal roots at  any point on the curve. 
Near X where q is small the last term in each right-hand side may be ignored, so 
that the curve is approximated by a parabola tangent to the line X Y .  This para- 
bola is given approximately by 

(2.22) 

At large distances from X ,  q is large and the last term on the right-hand side of 
(2.19) dominates. The approximate form is 

(2.23) 

The slope of this curve is therefore asymptotic to unity at  large distances from the 
origin. 

We note that all results expressed in terms of R’ and R; may be readily expressed 
in terms of R, R, via (2 .12) ,  for any given wave-number k2 = (a2 +n2)n2. 

3. The most unstable mode for given Rayleigh numbers 
The previous section considers the instability and growth rates of disturbances 

in a horizontal layer stratified by temperature and salinity where the disturbance 
has a fixed wave-number. We now consider the behaviour of the instability and 
growth rates for disturbances of different wave-number, for any given system 
specified by R and R,. 

Figure 2 shows the function 
q,, = f (R’, w, 

where f is defined only where q,, is non-negative, and where there are two possible 
values of q,. for the same R’, Ri, f is defined as the greater. For a given wave- 
number a, n and given values of R,  R, the growth rate for the quickest growing 

If now n is kept fixed and a varied, p,, will change in accordance with (3 .1) .  
As a increases from zero to infinity, a z / ( n 2 + a 2 ) 3  increases to a maximum of 
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&n4 at a2 = in2 and then decreases again to zero. The poinb R', RL (in the R', 
RL plane) moves along a straight line from the origin to the point (4/27n4n4) 
(R, R,) and back again to the origin. From the construction of figure 2,fincreases 

Direct and oscillaring 
unstable modes 

4000 - 
Unstable direct 

modes only 

I 

- 1000 2000 R, 
/ 

/ 
/ 

/ 

- -2000 

- 
Z 

FIaum 3. Demarcation curves in the R, R, plane for regions with different types of 
unstable modes. The line of neutral buoyancy R = R, is shown dashed. 

- R, 
0 1 2 

FIGURE 4. Stability curves in the neighbourhood of the triple point x. 

monotonically along such a line. To find the maximum growth rate for given 
R, R, one considers how pr varies with a along the appropriate line segment. 
Since ,f is stationary at a2 = in2 and the factor outside is increasing with a, 
the maximum value occurs for a value of az which is greater than or equal to 
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inz. Further, it may be shown that for all R, R, the most unstable mode has n = 1. 
The details of these calculations are given in the appendix. 

Taking n = 1, if the line segment in the R', Ri plane falls short of the line X W  
and X Z  the system will be stable for all wave-numbers. If it intersects X W  
the system will be unstable for some wave-numbers, but only to oscillating 
unstable modes if the line segment falls short of X V .  Direct modes are also 
possible if the line segment intersects X V .  Thus in the R, R, plane lines X Z ,  X W ,  
X r  may be defined as those corresponding to the lines X Z ,  X W  and X V  in the 
R', RL plane for a2 = +, n = 1. These lines are shown in figure 3, together with the 
line xu, which is the locus of the point X in the R, R, plane with variation of a2. 
To the left of Z X U  only direct modes are possible; between xr and XP only 
oscillating (unstable) modes are possible, while between xu and X both oscil- 
lating and direct modes are possible. The nature of the intersection of these curves 
at the 'triple point' x is shown in figure 4 on an enlarged scale. 

-- _ _  

- __ 

The equations for these lines are 

The equation for the line x p  is given by (2.12) and (2.15) with a2 = +, n = 1, 
and is R = R,- A ,  + (&[(a+ 1 + 27) R- (a- 2 + T )  R,+Bl]S, (3.3) 

where A,, B,, C, are constants given by 

and a,  b are given by (2.16). For R, large this has the form 

R = R,+ O(Rf),  (3.5) 

so that its slope is asymptotic to unity. 
The results of the calculations for the most unstable modes are given in figure 5, 

where lines of constant growth rate, wave-number and frequency are shown, 
together with the lines XZ, xw and xr. The curve marking where the most 
unstable mode changes from oscillatory to direct is denoted xD and lies above 
x v, but so close to it that the two curves can hardly be distinguished. Hence in 
systems where both types of modes are possible it is almost certain that the most 
unstable mode will be direct rather than oscillatory, the exceptions being those 
systems represented by points lying between xv and XD. pT = p (for the most 
unstable mode) is continuous across XD but a2 is not, generally falling to a value 
slightly in excess of 0.5 as the curve xD is crossed in the direction of increasing R. 
The frequency 4 jumps from a finite value to zero at  the same time, and both 
jumps are larger for larger values of R,. Thus a small increase in R can result in a 
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sudden change in the character of the most unstable mode and the physical 
importance of the line ifis is obvious. 

The reason for the jump in the most unstable wave-number and for the proxi- 
mity of the lines x and XD is due to the behaviour near the curve X V of the 
function q, = f (R', RL) plotted in figure 2. For RiIR' fixed and R' close to the value 
Rk, on X V ,  from (2.11) and (2.20) p(R') is given approximately by 

q(R') N p(RL,) +A(R'-R&,)*, 

FIGURE 5 .  Curves showing the nature of the most unstable mode. -, lines of constant 
growth rate showing values of p/+; - - -, lines of constant wave-number with values of 
aa indicated (with n = 1) ; - - - - -, lines of constant frequency with numbers giving values 
ofpi/+; -.-.- , the line xv, which is almost indistinguishable from the line xD. 

where A is a positive constant. For R' > Rjv this gives two direct modes while for 
R' < Rk, it gives two oscillatory modes. Now the function f is defined as the largest 
of the possible values of qr, so 

f (R') = f (R;,) + O(R'- R;,), for R' < Rj,, 

= f (Rj,) + A(R' - R:,)* + . .. for €2' > Rj,. 

Hence f is singular on the curve X V ,  the gradient off being finite at  R' = R&,- 
but infinite at R' = RLv + . When translated by (3.1) into the beliaviour of pr 
as a function of R and a2, the picture shown in figure 6 is obtained. If R < R, 
then R' is always less than Rj, and the smooth curve shown in figure 6(a) is 
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obtained. However, if R > R,,, R’ is greater than RLv for some values of a2 near 
3 and the spike shown in figure 6(b )  appears. The reason for the jump in the most 
unstable wave-number and the proximity of the curves xv and xB is clear. 
This behaviour may be expected in quite general circumstances as the argument 
does not depend on the existence of linear salt and temperature gradients nor in 
the particular boundary conditions imposed. 

I 
Max 

J .  
Max 

J. 

I I 
0 0 25 0.5 0 75 1 .o 

I I I I 
0 0 25 0.5 0 75 1 .o 

I 

0 0.25 0.5 0-75 1 .o 
a2 

( b )  

FIGURE 6.  (a) Form of p ,  as a function of a2 for a point (R, R,) on xv below ZD. ( b )  Form 
of pr its it function of aa for a point (R, R,) just above xo. 

Other features of figure 5 will now be described. For the most unstable modes, 
the curves p,, = constant in the oscillatory-mode region are close to straight lines 
and have asymptotic gradients for large R, of (CT+ 7)/(cr+ l ) ,  i.e. 0.91. The curves 
a2 = constant (not shown in figure 5) are also nearly straight, their asymptotic 
gradient being unity. The curves pi = constant are also sketched. These run 
from the line XD to the line xw. In  the direct mode region, the curves p = 
constant have asymptotic gradient 1 / ~  (i.e. 100) for large negative R,. The curves 
09 = constant are S-shaped with asymptotic gradient unity for large positive R 
and asymptotic gradient I / .  for large negative R. The latter gradient is not 
approached until the curves are well off the diagram, except for those with a2 very 
close to 0.5. 

It is interesting to see in figure 5 that the wave-number of the most unstable 
mode is comparatively large in the ‘salt finger’ region so that cells tend to be tall 
and thin. If we consider the line R, = eR where r < e < 1, then it follows 
from (2.11) that (I is given approximately by q = elR’I/(l+ IR’I), and tends to a 
constant value e as IR’( +m. When translated by (3.1) into the behaviour of p 
as a function of a2 for large R it may readily be seen that the maximum value of 
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I ,  is about &IRI*, occurring when na 2: IRlt. The corresponding value of IR’I 
is unity and the value of q is $e. Note that in dimensional terms the wave-number 
a* of maximum growth is given by 

as found by Stern (1960). The length scale involved is the same as that found for 
certain boundary layers on vertical walls in thermal convection problems (see, 
for example, Gill 1966, equation (2.2), Veronis 1967). 

4. The dominant factors affecting convection for various configurations 
of the system 

In this section we will calculate, for each R, R,, the relative importance of the 
various terms in the equation of motion. In  this way we measure the relative 
importance of the different physical processes involved. It is envisaged that this 
knowledge will be useful in the study of more complicated problems in suggesting 
which physical processes will be important and by indicating analytical approxi- 
mations which will make the finding of solutions more tractable. We wilI con- 
sider disturbances with fixed horizontal wave-number. The horizontal scale 
may be the one corresponding to the maximum growth rate or possibly one im- 
posed by boundary conditions, and of the three modes which have the given 
wave-number we will consider only the most unstable. The behaviour of this 
mode with time is represented by the number q = p /k2 ,  shown as a function of 
R’ and R: in figure 2. q is a solution of (2.11) which maybe written in the alterna- 
tive form 

q+u = ($23). (4.1) 

This form of the equation is especially significant physically as each term is 
proportional to a term in the vorticity equation (the first of (2.3)). The first term 
on the left-hand side corresponds to the rate of change of vorticity, the second 
term to the rate of loss of vorticity by diffusion and the right-hand side to 
the rate of generation of vorticity by buoyancy forces. To begin with, we will 
assume that q is real. The relative importance of the three terms depends on 
q/cr which is the ratio of the viscous diffusion time to the time scale of the process. 
Thus the ratio of these terms in the vorticity equation can be ascertained for any 
given R‘ and Ri by reference to figure 2. It will be seen that for most of the points 
shown in figure 2, q/cr is small so that the first term in (4.1), and hence the first 
term in the vorticity equation (first of (2.3)) may be neglected. 

Similar deductions may be made about the ratio of terms in the other two 
equations in (2.3), since q is the ratio of the heat diffusion time to the time scale 
of the problem, and q/7 is the ratio of the salt diffusion time to the time scale of 
the problem. If one fixes a ratio at which one of the terms is said to become 
‘negligible’, then figure 2 can be divided up into regions in each of which certain 
approximations to the equations can be made. For instance if it is decided that a 
term can be neglected if it is less than 113 of the biggest term in the same equation. 
then the boundaries of these regions are given by q = i r ,  27,&, 2,  Qu and 2 s .  In 
the region 27 < q < fr, for example, salt diffusion can be neglected and the time 
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derivative in the heat and vorticity equations can be neglected; in the region 
& < q < 2 salt diffusion can be neglected and the time derivative in the vorticity 
equation can be neglected, but all the terms in the heat equation are important. 
Similar statements can be made about the other regions. 

FIGURE 7.  Lime of constant B in the R’, R: plane. 

A further rehement can be made by considering the ratio of the two terms in 
the bracket on the right-hand side of (4.1) to the whole of the left-hand side. 
The ratio of these terns, in order of their appearance in (4.1) is given by 

1: IB++I : IB-41, 
where B satisfies simultaneously the equations 

aR’ = ( B + + ) ( q + g ) ( q + l ) , }  (4.2) 

and uRL = (B-  4) (a+ g) (q+ 7 ) .  

Contours of B in the R‘, Ri plane are shown in figure 7 and, as is readily seen, 
they are very nearly straight lines. If we define ‘negligible’ in the same sense as 
before, figure 7 may be divided up into regions of different physical balances by 
the lines B = & 4, 24. If  B > 24, the two terms on the right-hand side 
of (4.1) which represent the separate effects of buoyancy due to heat and buoyancy 
due to salt, dominate over the terms on the left-hand side. If Q < IBI < 1, one 
of the terms on the right-hand side is small. For other values of B, all terms are 
comparable. 

Similar analyses can be made for equations derived from (2.3) such as the 
energy equation. The terms in (4.1) are in fact proportional to terms in the energy 
equation and in suitable units, q/(q + a) is the rate of production of kinetic energy, 
a/(q + a) is the rate of dissipation, (B  + 4) is the rate of release of potential energy 
from the temperature gradient and (B  - 8) is the rate of doing work against the 
salt gradient. If B > $, work is done against the salinity gradient and if B > 18 

1 and 
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most of the energy released from the temperature gradient is used to do work 
against the salinity gradient. Conversely if B < + 4, energy is released from the 
salt gradient and if B < - l*, most of it is used to do work against the tempera- 
ture gradient. If q < cr, most of the energy remaining from these two effects is 
dissipated and only a small fraction is converted into kinetic energy, 

Another quantity of interest is the ratio of the average convective density 
fluxes due to heat and salt at a given level. This ratio is equal to (Q + B) / (+ -B)  
so that if B is large, the two fluxes are nearly equal and opposite. 

A similar analysis may be made of the vorticity equation (4.1) in the case where 
q is complex, viz. 

The real part of this equation (which includes the vorticity diffusion term) 
corresponds to the terms which are in phase with the velocity fluctuations, while 
the imaginary part corresponds to the terms which are out of phase. Equating 
real and imaginary parts gives 

a R  + 1 = -  
(qr+ (4r+7)2+q2’ 

and it then follows that 

(4.4) 

Hence on the lines q,. = constant the terms in (4.4) are all constant, and it is 
only necessary to know the one number q,. to calculate the ratios of the various 
terms. If 7 < q,. < cr, as is true for most of the region of oscillatory modes 
shown in figure 2, the ratio of the terms as they appear in the first part of (4.4) is 

The ratio of the terms in the second part is approximately 

Thus the primary balance in the vorticity equation is between the two buoyancy 
terms and the diffusion term. The diffusion term is in phase with the velocity 
fluctuations, so it only appears in the first of (4.4) and becomes relatively less 
important as q, becomes large. 

As in the case where q is real, when q is complex the terms in (4.3) are also pro- 
portional to the terms in the energy equation. However, in this case their relative 
phases are different. The kinetic energy which has time dependence 

fluctuates with increasing amplitude with frequency 2pi, and this is in phase with 
the fluctuating viscous dissipation. However, the other terms, namely the rate 
of increase of kinetic energy, the potential energy released from the tempera- 
ture buoyancy field, and the work done against the salinity buoyancy field, 

approximately q,/a : 1 : qr+ 1 : -9;. 

l/a : - 1 : 1. 

exp M P r  + iP&l 



304 P .  G. Baines and A .  E .  Gill 

all have phases differiilg from that of the kinetic energy. In  suitable comparative 
units (neglecting the exponential time dependence), (a;-" + @)# is the rate of gain 
of kinetic energy and CT is the rate of dissipation. In  the same units, the rate of 
release of potential energy from the temperature gradient is 

and the rate of working against the salinity gradient is 

(2%+u+ I)t(~,+7)2+q~lf / ( l -77) .  
Hence for increasing q,, qi the relative loss of energy via dissipation becomes 
smaller, and a greater proportion of energy from the temperature field is used to  

( 2 q r + ~ + 7 )  [(ar++)2+q;I'I(l-7), 

FIGURE 

1000 
I 

/ / I  * Rs 

4 = 011 

8. Lines of constant q, B and q, in the R, R, plane for the quickest growing mode. 

do work against the salinity field and also to increase the overall kinetic energy. 
The ratio of the two above expressions is also the ratio of the rates of convective 
density transport by heat and by salt at any level. 

The above results may be used for any given a, R and R, to estimate the relative 
importance of the different terms in (2.3), the ratios of the terms depending on 
either q and B or on q,. This is true in particular when the value of a is chosen as the 
one which, for given R and R,, gives maximum growth. Hence the values of q, 
B and qr for the disturbance of maximum growth rate may be calculated as 
functions of R and R,. For the direct modes this may readily be done via (3.5) and 
(4.2), and for the oscillating modes q, may be found via (3.7) and (3.8). Figure 8 
shows the results of this calculation. The figure shows, for instance, that in the 
region defined by T < RJR < I 
and R < -2000 

the time derivatives in the heat and vorticity equations can be neglected, as can 
the diffusion term in the salt equation. In  addition, figure 5 shows that a2 is large 
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so that z-derivatives can be neglected in comparison with x-derivatives. Such 
approximations may be useful in examinations of the 'salt finger' phenomenon 
in situations more complicated than that considered in this paper. 

P.G.B. acknowledges the support of a C.S.I.R.O. (Australia) post-graduate 
studentship. 

Appendix 

unstable mode for all R, R, from (2.9), (2.19), we put 
In order to obtain the growth-rate and horizontal wave-number of the most 

Considering first the case when p is real, (2.9) after some re-arrangement yields 

Maximum growth (with respect to a2) then occurs when @jay = 0, i s .  when 

(A 3) 
P+ a( 1 - y2) - - Ya' 7Y2r, 

0- (P+ 1 + yy-  (P+ 7(1+ y))Z' 

What is therefore required is to solve (A 2) and (A 3) simultaneously for P 
and y for given r ,  r,. However, since these equations are linear in r and r,, it is much 
simpler, for the purposes of obtaining the general picture, to substitute given 
values of P and y and obtain the corresponding r,  r, (which incidentally will be 
determined uniquely, so that there is a one-one correspondence between the 
pairs (P ,  y) and (r ,  rs) corresponding to the most unstable mode). Solving (A 2) 
and (A 3) for r and r, yields 

r =  (p+ 
a( 1 - 7)y2P 

a( 1 - 7) y2P 

+y)2 [ P 2 +  (a+ 7) (1 -y2) P+a7(1+ y)2 (1 - 2y)], 

r, = (p+ 7(1 +?/)I2 [P2  + (a+ 1) (1 - y2) P + a( 1 + y)2 (1 - 2y) 1. 

Lines of constant P and constant a2 in the R, R, plane obtained from these 
formulae are graphed in figure 6 for the case n = 1. 

The above analysis applies only for the direct modes, and the unstable oscil- 
latory modes need to be treated separately. Writing 

equation (2.19) may be written 

p, = k2q, = n2n2P,, (A 5 )  

The growth rate for an oscillatory mode is a maximum when aP,/ay = 0, that is, 
when 

20 Fluid Mech. 37 
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Again we have two equations which are linear in r and r,. These are readily solved 
for r and r, and the resultant formulae may be used to obtain the lines of constant 
P, and y. The frequencies of the modes may then be obtained from (2.18) and lines 
of constant p,, and constant frequency are graphed in figure 5 for n = 1. 

It remains to show that the most unstable mode always has n = 1. From (3. l), 
on any line radiating from the origin in the R, R, plane we may write 

where 

and W = constant x R. Then 

where g’ denotes the derivative of g with respect to its argument. It may be seen 
from figure 2 that f (R’, RL) always increases as one proceeds outwards on a line 
radiating from the origin in the R’, Ri plane, and this implies that g’ > 0 for all 
R, R,. Therefore, when 8prlaa2 = 0, aprlan2 < 0 for all continuous nz, and pr 
will be a maximum for the minimum permissible value of n, which is n = 1. 
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